

Overview of verified quantum computations using MBQC and recent progress

Harold Ollivier

QuantumTech@INRIA - QAT Team - https://qat.inria.fr

- What is verification and why it is important
- Short introduction to MBQC
- Intuition and protocol construction for verified MBQC
- Abstracting and generalizing
- **5** Lifting limitations and going toward practical solutions

What is verification and why it is important

Overview of verified quantum computations using MBQC and recent progress | 3

Selling the Hadamard gate

Selling the Hadamard gate

First attempt

•
$$H |0\rangle = |+\rangle$$
 $H |1\rangle = |-\rangle$

(nría_

Selling the Hadamard gate

First attempt

- $H |0\rangle = |+\rangle$ $H |1\rangle = |-\rangle$
- $\Pr(|0\rangle |H|0\rangle) = \frac{1}{2}$
- $\Pr(|1\rangle |H|0\rangle) = \frac{1}{2}$

Selling the Hadamard gate

First attempt

Second attempt

- $H |0\rangle = |+\rangle$ $H |1\rangle = |-\rangle$
- $\Pr(|0\rangle |H|0\rangle) = \frac{1}{2}$
- $\Pr(|1\rangle |H|0\rangle) = \frac{1}{2}$

Selling the Hadamard gate

First attempt

• $H |0\rangle = |+\rangle$ $H |1\rangle = |-\rangle$

•
$$\Pr(\ket{0}\ket{H}\ket{0}) = \frac{1}{2}$$

•
$$\Pr(\ket{1}\ket{H}\ket{0}) = \frac{1}{2}$$

Second attempt

$$H^{2}\left|\psi
ight
angle=\left|\psi
ight
angle$$

Selling the Hadamard gate

First attempt

- $H |0\rangle = |+\rangle$ $H |1\rangle = |-\rangle$
- $\Pr(|0\rangle |H|0\rangle) = \frac{1}{2}$
- $\Pr(|1\rangle |H|0\rangle) = \frac{1}{2}$

Second attempt

• $H^2 |\psi\rangle = |\psi\rangle$

•
$$\Pr(\ket{0}\ket{H^2}\ket{0}) = 1$$

• $\Pr\left(\ket{1}\ket{H^2}\ket{1}\right) = 1$

Selling the Hadamard gate

First attempt

- $H |0\rangle = |+\rangle$ $H |1\rangle = |-\rangle$
- $\Pr(|0\rangle |H|0\rangle) = \frac{1}{2}$
- $\Pr(|1\rangle |H|0\rangle) = \frac{1}{2}$

Second attempt

• $H^2 \left|\psi\right\rangle = \left|\psi\right\rangle$

•
$$\Pr (\ket{0} \ket{H^2 \ket{0}}) = 1$$

• $\Pr\left(\ket{1}\ket{H^2}\ket{1}\right) = 1$

Telling appart genuine and malicious implementations: offline setup

Gate tomography

Selling the Hadamard gate

First attempt

- $H |0\rangle = |+\rangle$ $H |1\rangle = |-\rangle$
- $\Pr(|0\rangle |H|0\rangle) = \frac{1}{2}$
- $\Pr(|1\rangle |H|0\rangle) = \frac{1}{2}$

Second attempt

• $H^2 |\psi\rangle = |\psi\rangle$

•
$$\Pr (\ket{0} \ket{H^2 \ket{0}}) = 1$$

• $\Pr\left(\ket{1}\ket{H^2}\ket{1}\right) = 1$

Telling appart genuine and malicious implementations: offline setup

Gate tomography

• Need to trust some model of the gate's behavior (e.g. fixed CPTP map)

Selling the Hadamard gate

First attempt

- $H |0\rangle = |+\rangle$ $H |1\rangle = |-\rangle$
- $\Pr(|0\rangle |H|0\rangle) = \frac{1}{2}$
- $\Pr(|1\rangle |H|0\rangle) = \frac{1}{2}$

Second attempt

• $H^2 |\psi\rangle = |\psi\rangle$

•
$$\mathsf{Pr}ig(|0
angle\,|H^2\,|0
angleig)=1$$

• $\Pr\left(\ket{1}\ket{H^2}\ket{1}\right) = 1$

Telling appart genuine and malicious implementations: offline setup

Gate tomography

- Need to trust some model of the gate's behavior (e.g. fixed CPTP map)
- Esp. no ability to change behavior when used alone vs inside a computation

Selling the Hadamard gate

First attempt

- $H |0\rangle = |+\rangle$ $H |1\rangle = |-\rangle$
- $\Pr(|0\rangle |H|0\rangle) = \frac{1}{2}$
- $\Pr(|1\rangle |H|0\rangle) = \frac{1}{2}$

Second attempt

• $H^2 \left|\psi\right\rangle = \left|\psi\right\rangle$

•
$$\mathsf{Pr}ig(|0
angle\,|H^2\,|0
angleig)=1$$

• $\Pr\left(\ket{1}\ket{H^2}\ket{1}\right) = 1$

Telling appart genuine and malicious implementations: offline setup

Gate tomography

- Need to trust some model of the gate's behavior (e.g. fixed CPTP map)
- Esp. no ability to change behavior when used alone vs inside a computation

Telling appart genuine and malicious implementations: online setup

Limitations to gate tomography:

Selling the Hadamard gate

First attempt

- $H |0\rangle = |+\rangle$ $H |1\rangle = |-\rangle$
- $\Pr(|0\rangle |H|0\rangle) = \frac{1}{2}$
- $\Pr(|1\rangle |H|0\rangle) = \frac{1}{2}$

Second attempt

• $H^2 \left|\psi\right\rangle = \left|\psi\right\rangle$

•
$$\mathsf{Pr}ig(|0
angle\,|H^2\,|0
angleig)=1$$

• $\Pr\left(\ket{1}\ket{H^2}\ket{1}
ight)=1$

Telling appart genuine and malicious implementations: offline setup

Gate tomography

- Need to trust some model of the gate's behavior (e.g. fixed CPTP map)
- Esp. no ability to change behavior when used alone vs inside a computation

Telling appart genuine and malicious implementations: online setup

Limitations to gate tomography:

• There is no guarantee that the behavior of gates will be repeatable

Selling the Hadamard gate

First attempt

- $H |0\rangle = |+\rangle$ $H |1\rangle = |-\rangle$
- $\Pr(|0\rangle |H|0\rangle) = \frac{1}{2}$
- $\Pr(|1\rangle |H|0\rangle) = \frac{1}{2}$

Second attempt

- $H^2 \left|\psi\right\rangle = \left|\psi\right\rangle$
- $\Pr\left(\ket{0}\ket{H^2}\ket{0}\right) = 1$
- $\Pr\left(\ket{1}\ket{H^2}\ket{1}\right) = 1$

Telling appart genuine and malicious implementations: offline setup

Gate tomography

- Need to trust some model of the gate's behavior (e.g. fixed CPTP map)
- Esp. no ability to change behavior when used alone vs inside a computation

Telling appart genuine and malicious implementations: online setup

Limitations to gate tomography:

- There is no guarantee that the behavior of gates will be repeatable
- There is no guarantee that the behavior alone / inside a computation is the same (ie scalability pb)

Innia-

- Allowed leakage
 - > Upper bound on number of qubits *n* and depth

- Allowed leakage
 - > Upper bound on number of qubits n and depth
- Inputs
 - > Client: Classical description of a computation C
 - > Server: two bits b and c (with b = c = 0 as default)

- Allowed leakage
 - > Upper bound on number of qubits n and depth
- Inputs
 - > Client: Classical description of a computation C
 - > Server: two bits b and c (with b = c = 0 as default)
- Computation
 - > if b = 1 it sends the allowed leakage to the Server, and if c = 1 is sent in return it sends $|\perp\rangle\langle\perp|\otimes|\text{Rej}\rangle\langle\text{Rej}|$ to the Client
 - > Otherwise it sends $C(|0\rangle\langle 0|^{\otimes n}) \otimes |Acc\rangle\langle Acc|$ to the Client

- Allowed leakage
 - > Upper bound on number of qubits n and depth
- Inputs
 - > Client: Classical description of a computation C
 - > Server: two bits b and c (with b = c = 0 as default)
- Computation
 - > if b = 1 it sends the allowed leakage to the Server, and if c = 1 is sent in return it sends $|\perp\rangle\langle\perp|\otimes|\text{Rej}\rangle\langle\text{Rej}|$ to the Client
 - > Otherwise it sends $C(|0\rangle\langle 0|^{\otimes n}) \otimes |Acc\rangle\langle Acc|$ to the Client

Protocol: Verified and Blind Quantum Computation

Proofs in abstract cryptography

Correctness

Proofs in abstract cryptography

Correctness

Security

Short introduction to MBQC

Overview of verified quantum computations using MBQC and recent progress | 8

Gate Teleportation

Gate Teleportation

 $\blacksquare (\alpha |0\rangle + \beta |1\rangle) \otimes |+_{\theta}\rangle$

Gate Teleportation

 $\begin{array}{c} \mathbf{I} \ \left(\alpha \left| \mathbf{0} \right\rangle + \beta \left| \mathbf{1} \right\rangle \right) \otimes \left| +_{\theta} \right\rangle \\ \mathbf{2} \ \left| +_{\theta} \right\rangle \otimes \left(\alpha \left| + \right\rangle + e^{i\theta}\beta \left| - \right\rangle \right) / \sqrt{2} + \\ \left| -_{\theta} \right\rangle \otimes \left(-\alpha \left| + \right\rangle + e^{i\theta}\beta \left| - \right\rangle \right) / \sqrt{2} \end{array}$

Gate Teleportation

Gate Teleportation

Universality

MBQC as lazy implementation of GT

Pushing corrections to the end

MBQC as lazy implementation of GT

Pushing corrections to the end

TYPILAL RESULT OF GT COMPILATION

Inria_

MBQC as lazy implementation of GT

Pushing corrections to the end

TYPILAL RESULT OF GT COMPILATION

lania_

Summary

- Graph and partial order over vertices
- Flow
- Measurement angles (for the all-0 branch)

Intuition and protocol construction for verified $\ensuremath{\mathsf{MBQC}}$

Preventing the Server to be malicious

Efficiency is not guaranteed

Preventing the Server to be malicious

Efficiency is not guaranteed

Making sure the Server is caught

Preventing the Server to be malicious

Efficiency is not guaranteed

Making sure the Server is caught

• Constantly test the behavior of the Server

Preventing the Server to be malicious

Efficiency is not guaranteed

Making sure the Server is caught

- Constantly test the behavior of the Server
- Make sure tests and computation look the same

Blindness

Blindness

• MBQC works because Client and Server share a reference frame

Blindness

- MBQC works because Client and Server share a reference frame
- By sending $|+\rangle_{\theta}$ the client defines a relative RF unknown to the Server

Overview of verified quantum computations using MBQC and recent progress | 13

Blindness

- MBQC works because Client and Server share a reference frame
- By sending $|+\rangle_{\theta}$ the client defines a relative RF unknown to the Server
- Blindness reduces attacks to convex combinations of Pauli deviations

Blindness

- MBQC works because Client and Server share a reference frame
- By sending $|+\rangle_{\theta}$ the client defines a relative RF unknown to the Server
- Blindness reduces attacks to convex combinations of Pauli deviations

Trap insertion

Blindness

- MBQC works because Client and Server share a reference frame
- By sending $|+\rangle_{\theta}$ the client defines a relative RF unknown to the Server
- Blindness reduces attacks to convex combinations of Pauli deviations

Trap insertion

Creating traps

Blindness

- MBQC works because Client and Server share a reference frame
- By sending $|+\rangle_{\theta}$ the client defines a relative RF unknown to the Server
- Blindness reduces attacks to convex combinations of Pauli deviations

Trap insertion

- Creating traps
- Inserting traps

Blindness

- MBQC works because Client and Server share a reference frame
- By sending $|+\rangle_{\theta}$ the client defines a relative RF unknown to the Server
- Blindness reduces attacks to convex combinations of Pauli deviations

Trap insertion

- Creating traps
- Inserting traps
- Allows deviation detection with constant probability

Innia-

Blindness

- MBQC works because Client and Server share a reference frame
- By sending $|+\rangle_{\theta}$ the client defines a relative RF unknown to the Server
- Blindness reduces attacks to convex combinations of Pauli deviations

Trap insertion

- Creating traps
- Inserting traps
- Allows deviation detection with constant probability

Amplification

Innia-

Blindness

- MBQC works because Client and Server share a reference frame
- By sending $|+\rangle_{\theta}$ the client defines a relative RF unknown to the Server
- Blindness reduces attacks to convex combinations of Pauli deviations

Trap insertion

- Creating traps
- Inserting traps
- Allows deviation detection with constant probability

Amplification

• Making sure that harmfull deviations are detected

Blindness

- MBQC works because Client and Server share a reference frame
- By sending $|+\rangle_{\theta}$ the client defines a relative RF unknown to the Server
- Blindness reduces attacks to convex combinations of Pauli deviations

Trap insertion

- Creating traps
- Inserting traps
- Allows deviation detection with constant probability

Amplification

- Making sure that harmfull deviations are detected
- Using fault-tolerant encoding before trap insertion

Limitations

Overhead

- Fault-tolerant encoding for amplification is costly
- Security competes with computing power (ie. for the number of live-qubits)

Inria_

Overhead

- Fault-tolerant encoding for amplification is costly
- Security competes with computing power (ie. for the number of live-qubits)

Robustness

- The fault-tolerant encoding does not protect from errors
- As soon as a single trap fails, the computation is aborted

Abstracting and generalizing

Overview of verified quantum computations using MBQC and recent progress | 15

Trappified canvas

Partial pattern

- G_P subgraph of G
- Input and output sets of nodes, I and O
- flow on G_P
- measurement angles ϕ_v

Innia

Trappified canvas

Partial pattern

- G_P subgraph of G
- Input and output sets of nodes, I and O
- flow on G_P
- measurement angles ϕ_v

Trappified canvas

- T partial pattern
- σ single-qubit product state on I
- \mathcal{T} an efficiently computable probability distribution for X measurements of qubits it O
- + τ a decision algorithms that takes a sample from ${\mathcal T}$ and outputs Pass or Fail

Trappified canvas

Partial pattern

- G_P subgraph of G
- Input and output sets of nodes, I and O
- flow on G_P
- measurement angles ϕ_{v}

Trappified canvas

- T partial pattern
- σ single-qubit product state on I
- \mathcal{T} an efficiently computable probability distribution for X measurements of qubits it O
- + τ a decision algorithms that takes a sample from ${\mathcal T}$ and outputs Pass or Fail

Trappified scheme

 A collection of canvas and an embedding algorithm that maps computations to patterns given a trappified canvas

Conditions for verification

Pauli detection

 $P \epsilon$ -detects $\mathcal{E} \subset \mathcal{G}_V$ if

$$orall E \in \mathcal{E}, \ \sum_{T \in \mathcal{P}} \Pr[au(t) = 1, T] \geq 1 - \epsilon$$

The probability is over the choice of canvas in the scheme and samples of the trap measurements \boldsymbol{t}

Pauli insensitivity

P is δ -insensitive to $\mathcal{E} \subset \mathcal{G}_V$ if

$$orall E \in \mathcal{E}, \ \sum_{T \in P} \Pr[au(t) = 0, T] \ge 1 - \delta$$

Pauli correctness

P is ν -correct on $\mathcal{E} \subset \mathcal{G}_V$ if,

$$\forall E \in \mathcal{E}, \ \forall C, \ \forall T \in P, \max_{\psi} \| (\tilde{C}_{T,E} - C) \otimes \mathbb{I}_R | \psi \rangle \langle \psi | \|_{tr} \leq \nu$$

C is the intended computation, $\tilde{C}_{T,E}$ is the pattern followed by the deviation E

Inría

Conditions for verification

Detection implies verifiability

 $\mathcal{E}_1, \mathcal{E}_2$ two pauli deviations sets with $\mathcal{E}_1 \cap \mathcal{E}_2 = \emptyset$ and $\mathbb{I} \in \mathcal{E}_2$. If *P* trappified scheme

- ϵ -detects \mathcal{E}_1 ,
- δ -insensitive to \mathcal{E}_2 ,
- ν -correct on $\mathcal{G}_V \setminus \mathcal{E}_1 P$ allows for $\delta + \nu$ correct and max (ϵ, ν) secure deletgate quantum computing in AC.

Lifting limitations and going toward practical solutions

Overview of verified quantum computations using MBQC and recent progress | 19

Separate concerns

- Trap design is easier and decoupled from the security proof
- Amplification process can be changed

Impact

- Traps based on any measurement of stabilizer generator of the graph work
- Allows to diversify the trappified canvas and adapt them to specific setups
 - > Robust verification
 - > Multi-party computation
 - > Rotation-only clients
 - > Fault-tolerant delegation of quantum computation

(nría_

• Traps and Computations are in different rounds (test and computation rounds)

- Traps and Computations are in different rounds (test and computation rounds)
- Amplification is done through majority voting (works only for BQP computations)

- Traps and Computations are in different rounds (test and computation rounds)
- Amplification is done through majority voting (works only for BQP computations)

Protocol

• Test rounds correspond to graph coloring

- Traps and Computations are in different rounds (test and computation rounds)
- Amplification is done through majority voting (works only for BQP computations)

Protocol

- Test rounds correspond to graph coloring
- Interleave computation and test rounds at random

- Traps and Computations are in different rounds (test and computation rounds)
- Amplification is done through majority voting (works only for BQP computations)

Protocol

- Test rounds correspond to graph coloring
- Interleave computation and test rounds at random

Benefit

- Robust up to 25% failure of test rounds
- Still not scalable (cf. Fault-tolerant version)

Conclusion

Practical implementations are possible

- Protocols scale
- Open questions
 - > Optimized schemes
 - > Low overhead verification for sampling
 - > Lowering the communication complexity
 - > Time to insert verification into HW roadmaps

Thanks you! (questions?)

Overview of verified quantum computations using MBQC and recent progress | 23

References

MBQC:

- > The one-way quantum computer a non-network model of quantum computation, R Raussendorf, D Browne, H Briegel, arXiv:quant-ph/0108118
- > One-way Quantum Computation a tutorial introduction, D Browne, H Briegel, arXiv:quant-ph/0603226
- > The Measurement Calculus, E Kashefi, V Danos, P Panangaden, arXiv:quant-ph/0412135

Abstract cryptography:

- > Abstract Cryptography, U Maurer, R Renner, https://crypto.ethz.ch/publications/files/MauRen11.pdf
- > Cryptographic security of quantum key distribution, C Portmann, R Renner, arXiv:1409.3525
- Background on verification
 - > Interactive Proofs for Quantum Computations, D Aharonov, M Ben-Or, E Eban, U Mahadev, arXiv:1704.04487
 - > Verification of Quantum Computation: An Overview of Existing Approaches, A Gheorghiu, T Kapourniotis, E Kashefi

References

- Definition of VBQC ideal resource:
 - > Composable security of delegated quantum computation, V Dunjko, J Fitzsimons, C Portmann, and R Renner, arXiv:1301.3662
- VBQC protocols:
 - > Unconditionally Verifiable Blind Quantum Computation, J Fitzsimons and E Kashefi, arXiv:1203.5217
 - > Optimised resource construction for verifiable quantum computation, E Kashefi and P Wallden, arXiv:1510.07408
- Recent work:
 - > Unifying Quantum Verification and Error-Detection: Theory and Tools for Optimisations, T Kapourniotis, E Kashefi, D Leichtle, L Music, HO, arXiv:2206.00631
 - > Verifying BQP Computations on Noisy Devices with Minimal Overhead, D Leichtle, L Music, E Kashefi, HO, arXiv:2109.04042
 - > Asymmetric Quantum Secure Multi-Party Computation With Weak Clients Against Dishonest Majority, T Kapourniotis, E Kashefi, D Leichtle, L Music, HO, arXiv:2303.08865

