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Selling the Hadamard gate

First attempt

• H |0⟩ = |+⟩ H |1⟩ = |−⟩
• Pr(|0⟩ |H |0⟩) = 1

2

• Pr(|1⟩ |H |0⟩) = 1
2

Second attempt

• H2 |ψ⟩ = |ψ⟩
• Pr

(
|0⟩ |H2 |0⟩

)
= 1

• Pr
(
|1⟩ |H2 |1⟩

)
= 1

Telling appart genuine and malicious implementations: offline setup
Gate tomography

• Need to trust some model of the gate’s behavior (e.g. fixed CPTP map)
• Esp. no ability to change behavior when used alone vs inside a computation

Telling appart genuine and malicious implementations: online setup
Limitations to gate tomography:

• There is no guarantee that the behavior of gates will be repeatable
• There is no guarantee that the behavior alone / inside a computation is the same (ie

scalability pb)

An (overly simplified) example
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Ideal Resource: Verified and Blind Quantum Computation

• Allowed leakage
> Upper bound on number of qubits n and depth

• Inputs
> Client: Classical description of a computation C
> Server: two bits b and c (with b = c = 0 as default)

• Computation
> if b = 1 it sends the allowed leakage to the Server, and if c = 1 is sent in return it sends

|⊥⟩⟨⊥| ⊗ |Rej⟩⟨Rej| to the Client
> Otherwise it sends C(|0⟩⟨0|⊗n) ⊗ |Acc⟩⟨Acc| to the Client

Verification (in Abstract Cryptography)
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Protocol: Verified and Blind Quantum Computation

Verification (in Abstract Cryptography)
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Correctness

Security

Proofs in abstract cryptography
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Short introduction to MBQC

02
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Gate Teleportation

1 (α |0⟩+ β |1⟩)⊗ |+θ⟩
2 |+θ⟩ ⊗ (α |+⟩+ eiθβ |−⟩)/

√
2 +

|−θ⟩ ⊗ (−α |+⟩+ eiθβ |−⟩)/
√

2
3 α |+⟩+βeiθ |−⟩ = HZ(θ)(|0⟩+β |1⟩)

Universality

Gate teleportation and universal computation
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Pushing corrections to the end

Summary

• Graph and partial order over vertices
• Flow
• Measurement angles (for the all-0 branch)

MBQC as lazy implementation of GT
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Intuition and protocol construction for
verified MBQC

03
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Preventing the Server to be malicious

Efficiency is not guaranteed

Making sure the Server is caught

• Constantly test the behavior of the Server
• Make sure tests and computation look the same

Intuition building
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Blindness

• MBQC works because Client and
Server share a reference frame

• By sending |+⟩θ the client defines a
relative RF unknown to the Server

• Blindness reduces attacks to convex
combinations of Pauli deviations

Trap insertion

• Creating traps
• Inserting traps
• Allows deviation detection with

constant probability

Amplification

• Making sure that harmfull deviations
are detected

• Using fault-tolerant encoding before
trap insertion

Constructing a verification protocol with MBQC
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Overhead

• Fault-tolerant encoding for amplification is costly
• Security competes with computing power (ie. for the number of live-qubits)

Robustness

• The fault-tolerant encoding does not protect from errors
• As soon as a single trap fails, the computation is aborted

Limitations
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Abstracting and generalizing

04
Overview of verified quantum computations using MBQC and recent progress | 15



Partial pattern

• GP subgraph of G
• Input and output sets of nodes, I and O
• flow on GP

• measurement angles ϕv

Trappified canvas

• T partial pattern
• σ single-qubit product state on I
• T an efficiently computable probability distribution

for X measurements of qubits it O
• τ a decision algorithms that takes a sample from

T and outputs Pass or Fail

Trappified scheme

• A collection of canvas and an embedding
algorithm that maps computations to patterns
given a trappified canvas

Trappified canvas
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Pauli detection
P ϵ-detects E ⊂ GV if

∀E ∈ E,
∑
T∈P

Pr[τ(t) = 1,T ] ≥ 1 − ϵ

The probability is over the choice of canvas in the scheme and samples of the trap
measurements t

Pauli insensitivity
P is δ-insensitive to E ⊂ GV if

∀E ∈ E,
∑
T∈P

Pr[τ(t) = 0,T ] ≥ 1 − δ

Pauli correctness
P is ν-correct on E ⊂ GV if,

∀E ∈ E, ∀C , ∀T ∈ P,max
ψ

∥(C̃T ,E − C)⊗ IR |ψ⟩⟨ψ| ∥tr ≤ ν

C is the intended computation, C̃T ,E is the pattern followed by the deviation E

Conditions for verification
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GV

I

E1: ϵ-detected by P

E2: P is δ-insensitive

GV \ E1: P is ν-correct

Detection implies verifiability
E1, E2 two pauli deviations sets with E1 ∩ E2 = ∅ and I ∈ E2. If P trappified scheme

• ϵ-detects E1,
• δ-insensitive to E2,
• ν-correct on GV \ E1 P allows for δ + ν correct and max(ϵ, ν) secure deletgate quantum

computing in AC.

Conditions for verification
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Lifting limitations and going toward practical
solutions

05
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Separate concerns

• Trap design is easier and decoupled from the security proof
• Amplification process can be changed

Impact

• Traps based on any measurement of stabilizer generator of the graph work
• Allows to diversify the trappified canvas and adapt them to specific setups

> Robust verification
> Multi-party computation
> Rotation-only clients
> Fault-tolerant delegation of quantum computation

What is it good for?
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Changing only the amplification procedure

• Traps and Computations are in different rounds (test and computation rounds)
• Amplification is done through majority voting (works only for BQP computations)

Protocol

• Test rounds correspond to graph coloring
• Interleave computation and test rounds at random

Benefit

• Robust up to 25% failure of test rounds
• Still not scalable (cf. Fault-tolerant version)

A simple robust verification protocol
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1 Practical implementations are possible
2 Protocols scale
3 Open questions

> Optimized schemes
> Low overhead verification for sampling
> Lowering the communication complexity
> Time to insert verification into HW roadmaps

Conclusion
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Thanks you! (questions?)
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• MBQC:
> The one-way quantum computer - a non-network model of quantum computation, R

Raussendorf, D Browne, H Briegel, arXiv:quant-ph/0108118
> One-way Quantum Computation - a tutorial introduction, D Browne, H Briegel,

arXiv:quant-ph/0603226
> The Measurement Calculus, E Kashefi, V Danos, P Panangaden, arXiv:quant-ph/0412135

• Abstract cryptography:
> Abstract Cryptography, U Maurer, R Renner,
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Kapourniotis, E Kashefi
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